

BRONCHIECTASIS-WHERE ARE WE?

Adam Hill
Royal Infirmary and University of Edinburgh

Plan

Stable State

Exacerbations

Aetiology

Viruses

Treatable causes

When to give antibiotics

Role of bacteria

Role of IV antibiotics

Strategies

What is bronchiectasis?

Symptoms and Pathology

- Permanently inflamed and damaged airways
- Leads to chronic colonisation
- Leads to daily cough + sputum production
- Leads to recurrent chest infections

SPECTRUM OF DISEASE

Characteristic	Mild	Moderate	Severe
Sputum Colour	Mucoid	Mucopurulent	Purulent
24hr Sputum Volume	<5mls		≥20mls
Exacerbation Frequency	<2/yr		<u>></u> 3/yr.
Exacerbation Severity	Oral Ab Outpatient Tx		IV Ab Hospital admission
Sputum bacteriology when stable	MNF	MNF/ Pathogens (HI, SPn, MC, SA)	PA, Enteric Gram- ve, MRSA
Affected lobes on CT scanning	<3 Lobes		<u>></u> 3
Degree of bronchial dilatation	Tubular	Varicose	Cystic

Sputum purulence

N=141

ERJ 2009;34:361-4

- 51 female
- Cough, Thick Tenacious Sputum
- 6 exacs/yr
- PMH Asthma
- DH
 Seretide 250 2p bd
 Salbutamol prn
 Montelukast 10mg nocte
 Always well on steroids (6 courses past year)
- SHPack Years
- Exam- Nil

Oct 2008

□ FEV₁ 2.0L 64% P

 \square O₂ sats air 98%

Sputum microbiology

01/09 MNF MP
03/09 NTHI MP
08/09 MNF MP
12/09 NTHI MP
03/10 MNF MP

Eosinophils 1.1 (<0.4)IgE 2000 kU/L (<250)

Apr 2009

What treatment did I give?

A] DNAse

B] Omalizumab

C] Oral steroids

D] IV antibiotics

Feb 2010

Ref	N	INF	IMMUNE	СТ	ABPA	CF	Ciliary	IBD	Aspiration	Cong	No caus e
1995	123	42%	4%				4%				30%
2000	150	29%	8%	3%	7%	3%	2%	1%	4%	1%	53%
2003	100	33%	1%	6%	1%						41%

Nicotra et al Chest1995;108:955-61 Pasteur et al Am J Respir Crit Care Med 2000;162:1277-84 Kelly et al Eur J Intern Med 2003;14:488-92

Investigate treatable causes

- Exclude common variable immunodeficiency
- Exclude ABPA
- Exclude cystic fibrosis
- Why?
- These all have treatments that differ from standard management

- 61 male
- 6 exacs/yr
- PMH Hiatus Hernia
- DHOmeprazole 20mg od
- SHPack Years
- Exam- BS in chest

CXR Hiatus Hernia

D.,

A] Erythromycin

HRCT HH + very mild bilat LL Bx

□ FEV₁ 2.9L

88% P

B] Increase PPI

O₂ sats air

98%

Sputum microbiology

01/09 MNF MP

03/09 SPn MP

08/09 PA

MP

12/09 M Catt MP

03/10 MNF MP

Management?

C] Metoclopramide

D] Fundoplication

E] Long term nebulised

- 51 female
- 6 exacs/yr
- PMH Nil
- DH

Nil

- □ SH
- 0 Pack Years
- Exam- Nil

- CXR RML + Ling changes
- HRCT Nodular Bx RML + Ling
- □ FEV₁ see below
- O_2 sats air 98%
- Sputum microbiology

01/09 MNF	MP	2.7L
03/09 MNF + MAC	MP	2.6L
08/09 MNF + MAC	MP	2.6L
12/09 MNF + MAC	MP	2.3L
03/10 MNF + MAC	MP	2.3L

CT

Indications and Management

Fibrocavitatory disease

Nodular Bx with clinical deterioration

- What treatment?
- A] RE
- □ B] RECI
- C] RECipro
- D] RHZE
- D] IV amikacin + IV tigecycline + moxifloxacin + rifampicin

- 72 male
- 7 exacs/yr
- PMH COPD
- DHTiotropium 18mcg odSeretide 250 2p bdSalbutamol prn
- SH60 pack yearsCurrent- 20cpd
- Exam- COPD
- + bibasal insp. crackles

- CXR COPD
- HRCT Emphysema and bilat LL Bx
- FEV₁ 0.6L (28% Predicted)
- O₂ sats air 90%
- Sputum microbiology

04/09 NTHI Р

08/09 NTHI

12/09 MNF MP

04/10 M Catt MP

Chronically colonised

Severe COPD

Mild bilateral Bx

Excess Exacerbation History

Management?

Management

A] Smoking Cessation Alone

B] Smoking cessation + LT Oral Co-amoxiclav

C] LT Oral Co-amoxiclav

 D] Smoking cessation and LT Nebulised Tobramycin

Are bacteria important

Related to severity of bronchiectasis Is bacterial load important?

MNF Mild disease

 PA, enteric gramves, MRSA in severe disease

Results- n=385

Microbiology

Pathogenic microorganisms were isolated in 77.9% of patients

Q1- Does bacterial load correlate with markers of airway and systemic inflammation?

Bacterial load correlates with systemic markers of neutrophil recruitment

Bacterial load drives neutrophil recruitment

Q2- What is the clinical relevance?

10/81

10151

0

10161

Log bacterial load cfu/ml

MOM

0

0

10/81

10/61

Log bacterial load cfu/ml

MOM

10151

Q3- Does antibiotic therapy reduce markers of airway inflammation?

Role of long term oral antibiotics- Randomised trials

				Exacerbation	ons Exacerbations
MRC	122	Oral Penicillin 2G	1 year	None	↓ days confined to bed
1957		VS.	2 days	recorded	↓ Less days off work
		Oral Tetracycline	per		
		2G vs.	week		
		2G Lactose			
Currie	38	3G bd oral	32	24% had PA	↓ severe exacerbations but
et al		amoxicillin vs.	weeks		no effect on frequency
1990		Placebo			
Tsang et	21	Oral	8	76% PA	No effect
al		Erythromycin	weeks	14% HI	
1999		500mg BD vs.		5% KPn	
		Placebo		5% E Coli	

Role of long term oral antibiotics- Randomised trials Bacteriology Exacerbations

Lancet	122	Azithromycin	6m	30% HI	Exacerbations
2012		Vs.		11% PA	(0.59/patient in Azi Gp. Vs.
380		Placebo		3% MC	1.57/pt in placebo gp) at
660-667				3% SA	6m.
				1% SP	
					(1.58/patient in Azi Gp. Vs.
					2.73/pt in placebo gp) at
					12m.
					Median time to
□ Az	ithro	mycin 500mg M,V	/, Fr	□ No o	exacerbation change in FEV, or SGRQ
En	try c	riteria: 1 exac in la	st	(-5.	17 VS1.92)
1y					

- Three primary endpoints: Exacs, FEV₁, SGRQ
- Baseline FEV₁ 67% predicted
- 3.34-3.93 Exacerbations/year

 Decreased serum WCC and CRP but no effect on sputum differential cell ct.

EMBRACE study

No effect on bacterial clearance

No bacterial load measured

4% developed SPn resistance

- More GI side effects
- □ 27% vs. 13%
- (diarrhoea 18%, nausea or vomiting 13%, epigastric discomfort 7% and constipation 3%)
- No audiometry carried out

Role of long term nebulised antibiotics-Randomised trials in PA

Exacerbations

Barker	74	Nebulised	4 weeks	100% PA	No Effect
et al		Tobramycin	on Tx		
2000		300mg BD vs.			
		Placebo			
Drobnic	30	Nebulised	6	100% PA	↓ number and days of
et al		Tobramycin	months		hospital admission
2005		300mg BD vs.			
		Placebo			No differences in number
					of exacerbations
Orriols	15	Nebulised	1 year	100% PA	\downarrow no. hospital admissions
et al		Ceftazidime plus			+
1999		Tobramycin vs.			\downarrow no. days in hospital
		symptomatic			
		treatment			

Role of nebulised Gentamicin: a randomised controlled trial

Am J Respir Crit Care Med. 2011;183(4):491-9.

Sputum Bacteriology

Gentamicin Group:

 30.8% of those colonised with *Pseudomonas aeruginosa* achieved eradication.

 92.8% of those colonised with pathogenic organisms other than Pseudomonas aeruginosa achieved eradication.

Change bacterial load in patients not eradicated

Assessment Timepoint

% Purulent sputum

Inflammation

Airways Inflammation

SystemicInflammation

Effect on Sputum Myeloperoxidase

Assessment Timepoint

Assessment Timepoint

	Gentamicin n=27		Saline n=30		
Time point (months)	0	12	0	12	
IL-8 ng/ml	38.4	33.2	39.1	42.9	
	(34.8-44.1)	(25.0-37.5)*#	(37.8-46.8)	(36.1-48.5)	
TNF-α pg/ml	1346	485.4	1281	1421	
	(485.1-3581)	(115.1-1286)*#	(374.9-2874)	(290-3074)	
IL-1β ng/ml	2.2	0.99	2.1	2.0	
	(0.96-4.0)	(0.46-2.2)*#	(0.59-3.4)	(0.68-3.0)	
ICAM-1	304.7	245.3	278.8	318.7	
ng/ml	(190.9-463.8)	(167.4-359.4)*#	(163.2-459.7)	(177-458.3)	
E-selectin	72.7	54.4	65.6	63.1	
ng/ml	(50.7-91.7)	(36.5-77.1)*	(45.1-80.1)	(47.2-80.8)	
VCAM-1	671.2	591.5	671.6	642	
ng/ml	(473.4-869)	(362.7-836.6)	(399.1-878.7)	(447.1-862)	
% positive microbiology	100%	33.3%*#	100%	96.7%	

Role of long term nebulised antibiotics-Randomised trials in PA + Other Pathogens

Murray et al	67;	Nebulised Gent	1	40-48% PA	Reduced exacerbations
2011	57	80mg bd vs.	year	Other	and increased time to
	finished	0.9% saline		PPMs	first exacerbation
	study				

Exacerbations

Gent 33% vs. Saline 80%

Gent 0(0-1) vs. Saline 1.5(1-2)

Gent 120d (87-162) vs. Saline 61.5d (20-7-122.7)

Other clinical endpoints

- Increased ETT 95m
- Increased frequency of improved HRQOL
- LCQ 81% vs. 20%
- SGRQ 82.5% vs. 19.2%
- No effect 24hr volume, FEV₁, FVC, FEF25/75
- 21.9% (7 of 32 patients) reported bronchospasm and received adjunctive nebulised β₂ agonist treatment.
- Despite this, two patients required withdrawal from the study (one at month 3 and one at month 6)
- Treatment needs to be continuous for its ongoing efficacy.

Other therapies

Author	Journal	Type of study	Treatment	Number	Results
Tsang et al	Thorax 2005 60:239	Randomised	Fluticasone 500mcg bd vs. Placebo 12/12	86	↓ 24hr sp. vol °Δ sp. Purulence °Δ PFT °Δ Exacs Better in PA patients but small nos.
Martinez- Garcia et al	Resp Med 2006 100:1623	Randomised	Fluticasone 250mcg bd vs. 500mcg bd vs. Placebo 6/12	93	500mcg BD ↓ cough+sputum ↓ breathless ↑ SGRQ (5U) °Δ micro °Δ PFT °Δ Exacs
Kapur et al	Cochrane 2009 Jan 21;CD0009 96	Cochrane review of RCTs		303	Insufficient evidence

Other therapies

Oral Tx

Leukotriene B4
 inhibitors – no
 randomised trials

- Elastase inhibitorsphase 2 trials ongoing
- Statins- ongoing RIEwill be reported next year

Inhaled Tx

Inhaled mannitol improved mucociliary clearance Daviskas et al Blu J 1999:159:1843 Daviskas et al Chest 2001:119:414 Daviskas et al Respirology 2005:10:46

Multicentred studies ongoing and results awaited

DNAse harmful Cochrane review 2000

Saline

Author	Journal	Type of study	Treatment	Number	Results
Kellett et al	Resp Med 2011 105:1831	Randomised 3m crossover study Single blinded	0.9% Saline vs. 7% Saline for 1yr.	28	 HS improvement %FEV₁, SGRQ better + reduced antibiotic use No data on microbiology or other therapies
Nicolson et al	Resp Med 2012 106:661	Randomised	0.9% Saline vs. 6% Saline for 1yr.	40	•FEV ₁ slightly better (20ml IS vs.90 ml) •Improvement in HRQOL •55-60% colonisation reduced to 15% No difference between groups

Conflicting results- further studies are needed

- 74 year old man with known bronchiectasis presents to GP feeling unwell with 2/7 history of cough, myalgia, headaches and fevers.
- No change in sputum volume or purulence

Is this an exacerbation requiring antibiotics?

Vote for antibiotics

 69 year old lady with known tubular bronchiectasis RLL presents feeing less well for 5 days and there is increased sputum volume and purulence

Investigations?

Is this an exacerbation requiring antibiotics?

BTS Guidelines-Thorax- 2010 Jul;65 Suppl 1:i1-58.

- Antibiotics recommended if deteriorating symptoms + change of sputum volume + purulence
- Prior to antibiotics being commenced send sputum C+S
- Empirical Abs based on previous microbiology.
- Treat 14 days but there is a lack of RCTs

- Di Bilton + colleagues
- Chest 2006;130(5):1503
- UK+US study in PA
- 14/7 ciprofloxacin 750mg
 bd +/- inh tobramycin
 300mg bd
- No change in clinical outcomes at days 14 or 21
- Increased wheeze with tobramycin 50% vs. 15%

Case- Known case attending GP

- 61 male
- 5 exacs/yr
- PMH Bx
- DH
 Omeprazole 20mg od
 Fluticasone 500mcg bd
 Salbutamol prn
- SHPack Years
- Exam- Bilateral course inspir crackles

□ FEV₁ 1.9L 61% P

 \square O₂ sats air 94%

Sputum microbiology

01/10 PA P

03/10 NTHI + Mcatt P

08/10 PA P

12/10 PA P

03/11 PA MP

Management?

Went to GP with a further chest infection

GP Gave Ciproxin 500mg bd for 14d but patient still felt ill. What action?

IV Antibiotics

- Dual agents to reduce drug resistance
- Ceftazidime+ Ciproxin/Gentamicin
- Tazocin + Ciproxin/Gentamicin
- Meropenum + Ciproxin/Gentamicin
- Meropenum + Colomycin
- Aztreonam + Colomycin

- In Vitro Resistance does it matter?
- Yes
 Risk of lack of response if given in vivo
 - Risk of polymicrobial resistance

?

Often patients respond even when in vitro resistance- try and assess response

How do you assess treatment response?

Assessing Response to

- Few evidence based endpoints
- Studies to date use various markers
- Sputum colour + volume; Sputum bacterial clearance; CRP; SGRQ were
 the best markers

 Murray et al Eur Respir J. 2009 Feb;33(2):312-8

- 45 year old lady
- Bilateral cystic bx
- FEV₁ 63% predicted
- Chronically colonised with PA resistant to Cipro + Tazocin
- 8 Chest infections in the past year

- On Seretide 500 1 accule bd
- Salbutamol prn
- Neb Colomycin
- What action?

Treatments strategy

Ensure complying with treatment

Ensure complying with chest physiotherapy

8 Weekly IV Antibiotics

 May make patients feel better and more control of the Bx

Acknowledgements

- Maeve Murray
- James Chalmers
- Pallavi Mandal
- Colleagues in CIR and CF Microbiology Unit

- CHSS